avermectins possess a disaccharide side chain. In contrast to L-oleandrose of avermectin, cytovaricin has a β-D-cymarosyl side chain.

The authors express their sincere thanks to Miss K. Kobayashi of this Institute for her technical help.

References

Albers-Schönberg, G., Arison, B. H., Chabala, J. C., Douglas, A. W. Eskola, P., Fisher, M. H., Lusi, A. Mrozik, H., Smith, J. L. \& Tolman, R. L. (1981). J. Am. Chem. Soc. 103, 4216-4221.

Brufani, M., Cerrini, S., Fedeli, W., Musu, C., Cellai, L. \& Keller-Schierlein, W. (1971). Experientia, 27, 604-606.
Furusaki, A. (1980). Acta Cryst. A35, 220-224.
Glehn, M., Norrestam, R., Kierkegaard, P. \& Maron, L. (1972). FEBS Lett. 20, 267-269.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: K ynoch Press.
Kihara, T. \& Isono, K. (1982). In preparation.
Kihara, T., Kusakabe, H., Nakamura, G., Sakurai, T. \& Isono, K. (1981). J. Antibiot. 34, 1073-1074.
Mishima, H., Kurabayashi, M., Tamura, C., Sato, S., Kuwano, H. \& Saito, A. (1975). Tetrahedron Lett. pp. 711-714.

Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77 (in Japanese).
Springer, J. P., Arison, B. H., Hirshfield, J. M. \& Hoogsteen, K. (1981). J. Am. Chem. Soc. 103, 4221-4224.

The Structure of Tetrazole Steroid Analogues. III. Structure of 4,6-Diaza- $\boldsymbol{A}, \boldsymbol{B}$-bishomocholest-4a-eno[4,3- $\boldsymbol{d}][6,7-\boldsymbol{d}]$ bistetrazole (HS-649), $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{~N}_{8}{ }^{*}$

By Jasmine Husain, Ian J. Tickle and Rex A. Palmer \dagger
Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, England

and Harkishan Singh and Kamlesh K. Bhutani
Department of Pharmaceutical Sciences, Punjab University, Chandigargh 14, India
(Received 29 June 1982; accepted 25 October 1982)

Abstract

M_{r}=478.7\), monoclinic, space group $C 2$, $a=35.537$ (4), $\quad b=7.494$ (1), $c=10.319$ (1) $\AA \AA, \quad \beta=$ $101 \cdot 25(1)^{\circ}, V=2695 \cdot 2 \cdot \AA^{3}, Z=4, D_{x}=1 \cdot 179, D_{m}=$ 1.143 (6) $\mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA$. Final $R=$ 0.054 for 2318 observed reflexions. The molecule exhibits a bowing in the α-direction.

Introduction. The bistetrazolo steroids 3,6-diaza- A, B -bishomocholest-4a-eno [3,4-d] [6,7-d] (HS-650) and 4,6-diaza- A, B-bishomocholest-4a-eno[4,3- $d][6,7-d]$ (HS649) are produced when cholest-4-ene-3,6-dione is treated with excess of hydrazoic acid and boron trifluoride in benzene (Singh \& Bhutani, 1978). Our previous paper (Husain, Tickle, Palmer, Singh \& Bhutani, 1982) described the crystal and molecular geometry of HS-650 and in the present paper a similar analysis of HS-649 is reported, together with a comparative study of the two.

[^0]Experimental. The synthesis has been described by Singh \& Bhutani (1978). Good quality tabular, transparent crystals grown from a mixture of acetone and water at room temperature are monoclinic, b axis parallel to the needle axis. Consideration of preliminary X-ray photographs led to assignment of space group $C 2$. Intensities and accurate cell parameters were measured on a Hilger \& Watts Y290 four-circle diffractometer, Ni-filtered $\mathrm{Cu} K \alpha$ radiation, $2 \theta<140^{\circ}$. A floating window (Tickle, 1975) employing the $\omega / 2 \theta$ scanning mode was used to measure 5886 reflexions, including two symmetry equivalents. Absorption corrections (North, Phillips \& Mathews, 1968; Tickle, 1979) were applied. Data set consisted of 2700 unique reflexions with a merging $R=0.0249$.

Many attempts were made to determine the crystal structure of HS-649 by direct methods using the programs MULTAN 78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978), YZARC (Declercq, Germain \& Woolfson, 1979) and SHELX 76 (Sheldrick, 1976), but all met with failure. The structure was

[^1]solved using vector verification (Braun, Hornstra \& Leenhouts, 1969), a Patterson search procedure similar to that of Nordman (1966). The program VECl (Ladd, 1973) implemented on the CDC 6600 computer at ULCC attempts to fit the vectors of a rigid molecular fragment of known geometry to the interatomic vectors in the Patterson function. A modified sum function is used to assess the measure of fit (MOF).

A 17 -atom model constituting rings B-homo, C, D and the tetrazole ring T_{2} was obtained from the crystal structure of HS-650 (Husain, 1981). A sharpened Patterson map was calculated at intervals of $a / 240$, $b / 48$ and $c / 70$. The vector model was then fitted as follows:
(1) Rotation search at 9° intervals to find possible orientations of the model in Patterson space.
(2) Translation search, using vectors between $2 \cdot 8$ $6.0 \AA$, to position each of the possible orientations of the model in the unit cell.
(3) Optimization, or fine adjustment of the positions of the 30 best parameter sets generated in stages (1) and (2).

Stages (1), (2) and (3) take into account Laue and space-group symmetry operations and include an intermolecular-distance test. The possible parameter sets were assessed according to both the value of the MOF, which is expected to be the smallest for the best fit, and the percentage reduction in MOF, during optimization. Using the program $S H E L X 76$ structure factors were calculated from the fractional coordinates of the 17 -atom fragment obtained from the best set in $V E C 1$. A Sim-weighted difference electron density map revealed 16 more peaks corresponding to possible non-H atoms. The resulting 33 -atom model was refined isotropically, by full-matrix least squares for four cycles after which $R=0.21$. A second difference electron density map yielded the two remaining atoms to complete the model. Anisotropic full-matrix leastsquares refinement of the model gave $R=0.09$. The H atoms were then geometrically positioned and allowed to ride on the corresponding C atoms, with their isotropic thermal parameters refining individually. Weights were applied to the final least-squares cycle as: $w=0.5982\left[\sigma^{2}(|F|)+0.005432|F|^{2}\right]^{-1}$.

Secondary extinction observed for low $(\sin \theta / \lambda)$ reflexions was accounted for by refining an extinction parameter whose final value was $8.42(1) \times$ 10^{-3}; final $R=0.059, \quad R_{w}=0.074$ and $R_{g}=$ 0.092 for all 2700 reflexions and $R_{o}=0.054, R_{\text {io }}=$ 0.063 and $R_{g o}=0.079$ for 2318 observed reflexions with $I>3 \sigma(I) ; F(000)=1040$, scattering factors taken from International Tables for X-ray Cystallography (1974).

Discussion. The final atomic coordinates of the non- H atoms together with their e.s.d.'s and equivalent
isotropic thermal parameters are given in Table 1.* The H atoms are numbered according to the C atoms to which they are bonded. Intramolecular bond lengths, bond angles and torsion angles are shown in Fig. 1. Ring-junction torsion angles are given in Table 2 for comparison with HS-650 (Husain et al., 1982).

As in the structure of 3,6-diaza- A, B-bishomo-cholest-4a-eno $3,4-d][6,7-d]$ bistetrazole (HS-650), the

[^2]Table 1. Refined positional parameters with e.s.d.'s in parentheses and equivalent isotropic thermal parameters for non-H atoms

	x	${ }^{\prime}$	z	$U_{\text {eq }}\left(\dot{\mathrm{A}}^{2}\right)$
C(1)	-0.2052 (1)	0.3083 (5)	-0.3142 (3)	0.0652
C(2)	-0.2250 (1)	0.2039 (7)	-0.4353 (4)	0.0766
C(3)	-0.2660 (1)	$0 \cdot 1770$ (6)	-0.4346 (4)	0.0753
$N\left(4{ }^{\prime}\right)$	-0.2800 (1)	$0 \cdot 1287$ (5)	-0.3270 (3)	0.0670
$N\left(3^{\prime}\right)$	-0.3193 (1)	$0 \cdot 1103$ (7)	-0.3624 (4)	0.0890
N(2')	-0.3274 (1)	0.1499 (9)	0.4868 (5)	0.1056
$\mathrm{N}\left(\mathrm{I}^{\prime}\right)$	-0.2949 (1)	0.1942 (7)	0.5345 (4)	0.0950
C(4a)	-0.2630 (1)	0.1005 (5)	-0.1951 (4)	0.0607
$\mathrm{C}(5)$	-0.2268 (1)	0.1330 (4)	-0.1346 (3)	0.0499
$\mathrm{N}\left(4^{\prime \prime}\right)$	-0.2203 (1)	0.0971 (4)	0.0041 (3)	0.0547
N(3')	-0.2382 (1)	0.1884 (5)	0.0887 (3)	0.0698
N(${ }^{\prime \prime}$)	-0.2230 (1)	0.1279 (6)	0.2064 (3)	0.0774
$\mathrm{N}\left(1^{\prime \prime}\right)$	-0.1960 (1)	0.0028 (5)	0.1989 (3)	0.0671
C(7)	-0.1945 (1)	-0.0141 (5)	0.0729 (3)	0.0522
$C(7 a)$	$-0.1707(1)$	-0.1374 (5)	0.0105 (3)	0.0536
$\mathrm{C}(8)$	-0.1435 (1)	-0.0490 (4)	. 0.0706 (3)	0.0453
C(9)	-0.1640 (1)	0.0432 (5)	-0.2006 (3)	0.0498
$\mathrm{C}(10)$	-0.1917 (1)	$0 \cdot 2023$ (5)	-0.1824 (3)	0.0522
C(11)	-0.1338(1)	0.1045 (6)	-0.2804 (3)	0.0643
C(12)	-0.1067 (1)	-0.0432 (5)	-0.3072 (3)	0.0620
C(13)	-0.0864 (1)	-0.1361 (5)	-0.1823 (3)	0.0476
$\mathrm{C}(14)$	-0.1179 (1)	-0.1988 (4)	-0.1070 (3)	0.0449
C(15)	-0.0965 (1)	-.0.3199 (5)	0.0011 (3)	0.0510
C(16)	-0.0668 (1)	-0.4157 (5)	-0.0668 (3)	0.0552
C(17)	$-0.0677(1)$	0.3196 (5)	-0.2000 (3)	0.0531
C(18)	$-0.0572(1)$. 0.0097 (5)	-0.0968 (3)	0.0579
C(19)	-0.1716 (1)	$0 \cdot 3415$ (5)	-0.08.34 (4)	0.0633
C(20)	-0.0281 (1)	-0.3261 (6)	-0.2408 (3)	0.0598
C(21)	-0.0274 (1)	-0.2199 (8)	-0.3662 (5)	0.0903
$\mathrm{C}(22)$	-0.0156 (1)	-0.5197 (7)	-0.2532 (4)	0.0665
C(23)	0.0235 (1)	-0.5448 (7)	0.2909 (4)	0.0708
C(24)	0.0362 (1)	-0.7366 (7)	-0.2875 (5)	0.0775
C(25)	0.0728 (2)	-0.7804 (9)	-0.3252 (8)	0.1247
C(26)	0.0999 (2)	-0.6578 (16)	-0.3464 (14)	0.1799
C(27)	0.0842 (2)	-0.9735 (9)	0.3146 (6)	0.1002

Table 2. Inter-ring torsion angles $\left({ }^{\circ}\right)$

E.s.d.'s are $0.4-0.6{ }^{\circ}$.		
Rings		
$A-B$	$\begin{aligned} & C(1)-C(10)-C(5)-N\left(4^{\cdot \prime}\right) \\ & C(9)-C(10)-C(5)-C(4 a) \end{aligned}$	$\begin{aligned} & -156.8 \\ & -101.1 \end{aligned}$
$B-C$	$\begin{aligned} & C(10)-C(9)-C(8)-C(14) \\ & C(11)-C(9)-C(8)-C(7 a) \end{aligned}$	$\begin{aligned} & +180.0 \\ & -172.8 \end{aligned}$
$C-D$	$\begin{aligned} & C(12)-C(13)-C(14)-C(15) \\ & C(17)-C(13)-C(14) C(8) \end{aligned}$	$\begin{array}{r} +169.5 \\ +180.0 \end{array}$
$A-T_{1}$	$\begin{aligned} & C(2)-C(3)-N\left(4^{\prime}\right)-N\left(3^{\prime}\right) \\ & N\left(1^{\prime}\right)-C(3)-N\left(4^{\prime}\right)-C(4 a) \end{aligned}$	$\begin{aligned} & -178.2 \\ & -176.5 \end{aligned}$
$B-T_{2}$	$\begin{aligned} & C(5)-N\left(4^{\prime \prime}\right)-C(7)-N\left(1^{\prime \prime}\right) \\ & C(7 a)-C(7)-N\left(4^{\prime \prime}\right)-N\left(3^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & +176.3 \\ & +178.2 \end{aligned}$

Fig. 1. (a) Bond lengths (\AA) with e.s.d.'s subscripted, (b) bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s subscripted.

Fig. 1. (cont.) (c) Selected torsion angles (${ }^{\circ}$) with e.s.d.'s in the range $0.4-1 \cdot 0^{\circ}$.
dihedral angle at ring junction A, B is about 53° in HS-649 which corresponds to a bowing of the molecule in the α-direction (Fig. 2). Ring A has a 'butterfly' conformation similar to ring B in HS-665 (Husain, Palmer, Singh, Bhardwaj \& Paul, 1981). Ring B has only one direction with noticeably dominant mirror symmetry, between $C(9)$ and $C(7)-N\left(4^{\prime \prime}\right)$. Ring C has a highly symmetrical chair conformation while ring D adopts a distorted $13 \alpha, 14 \beta$ half-chair conformation with $\Delta C_{2}^{16}=6.93^{\circ}$. The fusion of the tetrazoles with the steroid nucleus has resulted in partial

Fig. 2. Stereoview down the $\mathrm{C}(14)-\mathrm{C}(12)$ bond exhibiting a cis-like conformation.
delocalization observed in shortened $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths subtending angles $>120^{\circ}$. Several $C-C$ bond lengths in the cholesteryl side chain exhibit apparent shortening associated with high thermal parameters: $\mathrm{C}(25)-\mathrm{C}(26)=1.381$ (13) \AA with U_{33} of $C(26)>0.45 \AA^{2}$. E.s.d.'s are, as expected, quite high in the cholesteryl side chain which has an extended conformation with chain length $C(17) \cdots C(25)=$ $6.4 \AA$. There are no intermolecular contact distances less than $3.6 \AA$. The crystal packing is similar to that of HS-650 $\left(P 2_{1} 2_{1} 2_{1}, \quad Z=8\right)$ which mimics a $C 222_{1}$ arrangement.

JH acknowledges receipt of a studentship from Birkbeck College during the course of this work. Computations were undertaken on the computers (IBM 370/165) at Daresbury, SERC and (CDC 7600) at University London Computer Center.

References

Braine, P._B.,Hornstra, J. \& Leenhouts, J. I. (1969). Philips Res. Rep. 42, 85-118.
Declerce, J. P., Germain, G. \& Woolfson, M. M. (1979). Acta Cryst. A 35, 622-626.
Husain, J. (1981). PhD Thesis, London Univ.
Husain, J., Palmer, R. A., Singh, H., Bhardwaj, T. R. \& Paul, D. (1981). Acta Cryst. B37, 205-209.

Husain, J., Tickle, I. J., Palmer, R. A., Singh, H. \& Bhutani, K. K. (1982). Acta Cryst. B38, 2845-2851.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham Kynoch Press.

Ladd, M. F. C. (1973). Internal research notes. Univ. of̂ Surrey.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P. \& Woolfson, M. M. (1978). multan 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England. Nordman, C. E. (1966). Trans. Am. Crystallogr. Assoc. 2, 29.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX 76. Program for crystal structure determination. Univ. of Cambridge, England.
Singh, H. \& Bhutani, K. K. (1978). Indian J. Chem. 16B, 95-97.
Tickle, I. J. (1975). Acta Cryst. B31, 329-331.
Tickle, I. J., (1979). Data processing manual. Crystallographic Laboratory, Birkbeck College, Univ. of London.

Acta Cryst. (1983). C 39, 300-302

1,8-Dinitro-4,5-dihydroxyanthraquinone, ${ }^{*} \mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{8}$

By C. J. Brown and M. L. Colclough
Department of Metallurgy and Materials Engineering, City of London Polytechnic, Central House, Whitechapel High Street, London E1 7PF, England

(Received 17 May 1982; accepted 26 October 1982)

Abstract

M_{r}=330.21\), monoclinic, $P 2_{1} / a, \quad a=$ 15.664 (8), $\quad b=12.056$ (7), $\quad c=6.704$ (5) $\AA, \quad \beta=$ $94.20(5)^{\circ}, \quad V=1262.62 \AA^{3}, \quad D_{x}=1.737, \quad D_{m}=$ $1.717 \mathrm{Mg} \mathrm{m}^{-3}, \quad Z=4, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA$, $\mu(\mathrm{Cu} K \alpha)=1.29 \mathrm{~mm}^{-1}, F(000)=672, R=0.044$ for 1862 observed $[I>3 \sigma(I)$] reflexions. The structure comprises discrete molecules with two internal hydrogen bonds per molecule, and the two nitro groups are inclined by 83.83 (5) and $62.88(5)^{\circ}$ to the anthraquinone nucleus.

Introduction. This work was undertaken as part of a study of the distortions from planarity of a number of substituted anthraquinones which might yield correlations between structure and chemical reactivity. Several of the results of these structure determinations have already been published (Bailey, 1958; Bailey \& Brown, 1967a,.c; Brown \& Mitchell, 1982).

Experimental. Sample obtained from Imperial Chemical Industries Limited (Organics Division), acicular crystals suitable for X-ray diffraction measurements grown from phenol solution, strongly pleochroic,

[^3]showing purple and brown shading; unit-cell dimensions obtained initially from rotation photographs, and more accurately from high-angle reflexions on Weissenberg photographs by a least-squares analysis of the $\alpha_{1} \alpha_{2}$ separations; crystal $2.0 \times 0.2 \times 0.2 \mathrm{~mm}$ for collecting intensity data; Nonius integrating Weissenberg camera at University College London; multiple-film photographs taken about \mathbf{b} (zero level) and \mathbf{c} (zero and five levels), intensities derived from a combination of visual and optical measurements using a Joyce-Loebl microdensitometer; 2316 measured reflexions; structure solved by a combination of a sharpened threedimensional Patterson synthesis and manually derived \sum_{2} relationships; signs of 171 independent structure amplitudes thereby obtained, the resulting E map showing all the non-hydrogen atoms; parameters refined by least-squares calculations using $B_{i j}$ and $w=1 / F$ until shifts were all less than 0.5σ; positional parameters for the six H atoms obtained from a difference Fourier map, and these, together with their $B_{\text {iso }}$, were refined until the shifts were less than σ; $R_{w}=0.058$; scattering factors from International Tables for X-ray Crystallography (1962); computer programs used included some local compilations on the IBM 360/65 at University College London, but were mainly those of the NRC series (Ahmed, Hall, Pippy \& Huber, 1970) implemented on the ICL 1905E at the London Polytechnics Computer Unit.

[^0]: * Steroids and Related Studies. Part 59.
 \dagger To whom all correspondence should be directed.

[^1]: © 1983 International Union of Crystallography

[^2]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, dihedral angles between best planes, asym metry parameters, deviations of atoms from best planes and a figure showing crystal packing in HS-649 and HS-650 have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38202 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU. England.

[^3]: *IUPAC nomenclature: 1,8-dihydroxy-4,5-dinitroan-thraquinone.

